Math 284
Cuyamaca College

Name:
Instructor: Dan Curtis

Practice Exam 2

1) True or False. Justify your answers. (Any matrix listed is not assumed to be square or invertible unless stated.)
a) If $A B=A C$ and $A \neq 0$, then $B=C$.
b) If D is $n \times n$ and the equation $D \mathbf{x}=\mathbf{b}$ has no solution for some $b \in \mathbb{R}^{n}$, then D is not invertible.
c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation such that $T\left(\mathbf{e}_{1}\right)=(3,4)$ and $T\left(\mathbf{e}_{2}\right)=(-2,7)$, then T is both one-to-one and onto.
d) Let A be a 3×5 matrix. Then the columns of A could be linearly independent, but they can't span \mathbb{R}^{3}.
2) a) Find the standard matrix, A, for the linear transformation given by: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, T(\mathbf{x})=\left[\begin{array}{c}2 x_{1}-3 x_{2} \\ x_{2} \\ x_{1}+3 x_{2}\end{array}\right]$
b) Determine whether T is one-to-one, onto or both. Justify your answer.
3) Determine whether the given transformation is linear. Justify your conclusion.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}5 x_{1}+2 x_{2} \\ 3 x_{2}\end{array}\right]$
4) For problem 4, let $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right], B=\left[\begin{array}{rrr}2 & 3 & -3 \\ 2 & -2 & 1\end{array}\right]$, and $C=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6 \\ 1 & 7 & 8\end{array}\right]$. If the indicated calculation is not possible, indicate why.
a) Find $A B$.
b) Find $B A$
c) Find C^{-1}.
d) Find $\operatorname{det}(C)$
e) Find B^{T}
5) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector across the x_{1} axis and then rotates it counterclockwise by an angle of π. Find the standard matrix A for the transformation.
6) Suppose A and B are row equivalent $n \times n$ matrices, and the following series of row operations transforms A into B.
$R_{1} \leftrightarrow R_{3}$
$-2 R_{1}+R_{2}$
$3 R_{1}+R_{3}$
${ }_{4}{ }^{\frac{1}{4}} R_{2}$
$2 R_{2}+R_{3}$
$6 R_{3}$

If $B=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 0 & 4 & 6 \\ 0 & 0 & 8\end{array}\right]$ find $\operatorname{det}(A)$.
7) Suppose D, E and F are invertible $n \times n$ matrices and I is the $n \times n$ identity matrix. Solve for E.

$$
D^{-1} E D^{-1}+F=I
$$

8) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{cc}
3 & -1 \\
-2 & 2
\end{array}\right]
$$

Show on the graph the result of applying the transformation to the image below.

					A					

